Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene.

Identifieur interne : 002214 ( Main/Exploration ); précédent : 002213; suivant : 002215

Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene.

Auteurs : Xiangkai Li [États-Unis] ; Lee R. Krumholz

Source :

RBID : pubmed:17337573

Descripteurs français

English descriptors

Abstract

Desulfovibrio desulfuricans G20 grows and reduces 20 mM arsenate to arsenite in lactate-sulfate media. Sequence analysis and experimental data show that D. desulfuricans G20 has one copy of arsC and a complete arsRBCC operon in different locations within the genome. Two mutants of strain G20 with defects in arsenate resistance were generated by nitrosoguanidine mutagenesis. The arsRBCC operons were intact in both mutant strains, but each mutant had one point mutation in the single arsC gene. Mutants transformed with either the arsC1 gene or the arsRBCC operon displayed wild-type arsenate resistance, indicating that the two arsC genes were equivalently functional in the sulfate reducer. The arsC1 gene and arsRBCC operon were also cloned into Escherichia coli DH5alpha independently, with either DNA fragment conferring increased arsenate resistance. The recombinant arsRBCC operon allowed growth at up to 50 mM arsenate in LB broth. Quantitative PCR analysis of mRNA products showed that the single arsC1 was constitutively expressed, whereas the operon was under the control of the arsR repressor protein. We suggest a model for arsenate detoxification in which the product of the single arsC1 is first used to reduce arsenate. The arsenite formed is then available to induce the arsRBCC operon for more rapid arsenate detoxification.

DOI: 10.1128/JB.01913-06
PubMed: 17337573
PubMed Central: PMC1913334


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene.</title>
<author>
<name sortKey="Li, Xiangkai" sort="Li, Xiangkai" uniqKey="Li X" first="Xiangkai" last="Li">Xiangkai Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019-0245, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019-0245</wicri:regionArea>
<placeName>
<region type="state">Oklahoma</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krumholz, Lee R" sort="Krumholz, Lee R" uniqKey="Krumholz L" first="Lee R" last="Krumholz">Lee R. Krumholz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17337573</idno>
<idno type="pmid">17337573</idno>
<idno type="doi">10.1128/JB.01913-06</idno>
<idno type="pmc">PMC1913334</idno>
<idno type="wicri:Area/Main/Corpus">002263</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002263</idno>
<idno type="wicri:Area/Main/Curation">002263</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002263</idno>
<idno type="wicri:Area/Main/Exploration">002263</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene.</title>
<author>
<name sortKey="Li, Xiangkai" sort="Li, Xiangkai" uniqKey="Li X" first="Xiangkai" last="Li">Xiangkai Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019-0245, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019-0245</wicri:regionArea>
<placeName>
<region type="state">Oklahoma</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krumholz, Lee R" sort="Krumholz, Lee R" uniqKey="Krumholz L" first="Lee R" last="Krumholz">Lee R. Krumholz</name>
</author>
</analytic>
<series>
<title level="j">Journal of bacteriology</title>
<idno type="ISSN">0021-9193</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenate Reductases (genetics)</term>
<term>Arsenate Reductases (metabolism)</term>
<term>Arsenates (metabolism)</term>
<term>Arsenates (toxicity)</term>
<term>Arsenites (metabolism)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Desulfovibrio desulfuricans (enzymology)</term>
<term>Desulfovibrio desulfuricans (genetics)</term>
<term>Drug Resistance, Bacterial (MeSH)</term>
<term>Escherichia coli (MeSH)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Genome, Bacterial (MeSH)</term>
<term>Mutagenesis (MeSH)</term>
<term>Operon (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phylogeny (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arsenate Reductases (génétique)</term>
<term>Arsenate Reductases (métabolisme)</term>
<term>Arséniates (métabolisme)</term>
<term>Arséniates (toxicité)</term>
<term>Arsénites (métabolisme)</term>
<term>Desulfovibrio desulfuricans (enzymologie)</term>
<term>Desulfovibrio desulfuricans (génétique)</term>
<term>Escherichia coli (MeSH)</term>
<term>Génome bactérien (MeSH)</term>
<term>Mutagenèse (MeSH)</term>
<term>Opéron (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Résistance bactérienne aux médicaments (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arsenate Reductases</term>
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arsenate Reductases</term>
<term>Arsenates</term>
<term>Arsenites</term>
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Arsenates</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Desulfovibrio desulfuricans</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Desulfovibrio desulfuricans</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Desulfovibrio desulfuricans</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arsenate Reductases</term>
<term>Desulfovibrio desulfuricans</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arsenate Reductases</term>
<term>Arséniates</term>
<term>Arsénites</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Arséniates</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Resistance, Bacterial</term>
<term>Escherichia coli</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Genome, Bacterial</term>
<term>Mutagenesis</term>
<term>Operon</term>
<term>Oxidation-Reduction</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Escherichia coli</term>
<term>Génome bactérien</term>
<term>Mutagenèse</term>
<term>Opéron</term>
<term>Oxydoréduction</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Résistance bactérienne aux médicaments</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Desulfovibrio desulfuricans G20 grows and reduces 20 mM arsenate to arsenite in lactate-sulfate media. Sequence analysis and experimental data show that D. desulfuricans G20 has one copy of arsC and a complete arsRBCC operon in different locations within the genome. Two mutants of strain G20 with defects in arsenate resistance were generated by nitrosoguanidine mutagenesis. The arsRBCC operons were intact in both mutant strains, but each mutant had one point mutation in the single arsC gene. Mutants transformed with either the arsC1 gene or the arsRBCC operon displayed wild-type arsenate resistance, indicating that the two arsC genes were equivalently functional in the sulfate reducer. The arsC1 gene and arsRBCC operon were also cloned into Escherichia coli DH5alpha independently, with either DNA fragment conferring increased arsenate resistance. The recombinant arsRBCC operon allowed growth at up to 50 mM arsenate in LB broth. Quantitative PCR analysis of mRNA products showed that the single arsC1 was constitutively expressed, whereas the operon was under the control of the arsR repressor protein. We suggest a model for arsenate detoxification in which the product of the single arsC1 is first used to reduce arsenate. The arsenite formed is then available to induce the arsRBCC operon for more rapid arsenate detoxification.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17337573</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>06</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9193</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>189</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2007</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of bacteriology</Title>
<ISOAbbreviation>J Bacteriol</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene.</ArticleTitle>
<Pagination>
<MedlinePgn>3705-11</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Desulfovibrio desulfuricans G20 grows and reduces 20 mM arsenate to arsenite in lactate-sulfate media. Sequence analysis and experimental data show that D. desulfuricans G20 has one copy of arsC and a complete arsRBCC operon in different locations within the genome. Two mutants of strain G20 with defects in arsenate resistance were generated by nitrosoguanidine mutagenesis. The arsRBCC operons were intact in both mutant strains, but each mutant had one point mutation in the single arsC gene. Mutants transformed with either the arsC1 gene or the arsRBCC operon displayed wild-type arsenate resistance, indicating that the two arsC genes were equivalently functional in the sulfate reducer. The arsC1 gene and arsRBCC operon were also cloned into Escherichia coli DH5alpha independently, with either DNA fragment conferring increased arsenate resistance. The recombinant arsRBCC operon allowed growth at up to 50 mM arsenate in LB broth. Quantitative PCR analysis of mRNA products showed that the single arsC1 was constitutively expressed, whereas the operon was under the control of the arsR repressor protein. We suggest a model for arsenate detoxification in which the product of the single arsC1 is first used to reduce arsenate. The arsenite formed is then available to induce the arsRBCC operon for more rapid arsenate detoxification.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xiangkai</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019-0245, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krumholz</LastName>
<ForeName>Lee R</ForeName>
<Initials>LR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>03</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Bacteriol</MedlineTA>
<NlmUniqueID>2985120R</NlmUniqueID>
<ISSNLinking>0021-9193</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001149">Arsenates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018053">Arsenites</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.20.-</RegistryNumber>
<NameOfSubstance UI="D053502">Arsenate Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N5509X556J</RegistryNumber>
<NameOfSubstance UI="C015001">arsenite</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N7CIZ75ZPN</RegistryNumber>
<NameOfSubstance UI="C025657">arsenic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D053502" MajorTopicYN="N">Arsenate Reductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001149" MajorTopicYN="N">Arsenates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018053" MajorTopicYN="N">Arsenites</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045285" MajorTopicYN="N">Desulfovibrio desulfuricans</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024881" MajorTopicYN="N">Drug Resistance, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016680" MajorTopicYN="N">Genome, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="N">Mutagenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009876" MajorTopicYN="N">Operon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17337573</ArticleId>
<ArticleId IdType="pii">JB.01913-06</ArticleId>
<ArticleId IdType="doi">10.1128/JB.01913-06</ArticleId>
<ArticleId IdType="pmc">PMC1913334</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15617-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17030823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1997 Nov;168(5):380-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9325426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1994 Mar;242(5):566-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8121414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11698660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 1999 May;7(5):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10354596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Jan;177(2):385-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7814328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Apr;68(4):1932-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11916715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Oct 27;371(6500):750</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7935832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Sep;185(18):5363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2000 Jan;173(1):49-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10648104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Oct 2;529(1):86-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12354618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Apr;180(7):1655-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9537360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1998 Oct;144 ( Pt 10):2705-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9802012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1996 Nov 7;179(1):9-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8991852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4559594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 May;63(5):2022-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Feb;177(4):981-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7860609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Oct;62(10):3762-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8837431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10983-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12939408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 9;300(5621):939-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12738852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol A Mol Integr Physiol. 2002 Nov;133(3):689-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12443926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Jul;67(7):3168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11425737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9474-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1409657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Apr;177(8):2050-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7721697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Lett. 1975;8(2):157-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">236901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jan 5;268(1):52-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8416957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 May;69(5):2800-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2002 Aug;26(3):311-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12165430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 2002 Oct;110 Suppl 5:745-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12426124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Jun;174(11):3676-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1534327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Jun 14;33(23):7288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8003492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1974;134(1):77-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4617157</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oklahoma</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Krumholz, Lee R" sort="Krumholz, Lee R" uniqKey="Krumholz L" first="Lee R" last="Krumholz">Lee R. Krumholz</name>
</noCountry>
<country name="États-Unis">
<region name="Oklahoma">
<name sortKey="Li, Xiangkai" sort="Li, Xiangkai" uniqKey="Li X" first="Xiangkai" last="Li">Xiangkai Li</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002214 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002214 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17337573
   |texte=   Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17337573" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020